|
|
|
|
이영우 (Youngwoo Lee)  |
Purdue University |
 37 KB CV updated 2021-07-20 03:57
|
|
|
|
|
A co-fractionation mass spectrometry-based prediction of protein complex assemblies in the developing rice aleurone-subaleurone
 Authors and Affiliations
 Authors and Affiliations
Youngwoo Leea, Thomas W. Okitab, Daniel B. Szymanskia,c,*
aDepartment of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907.
bInstitute of Biological Chemistry, Washington State University, Pullman, Washington 99164.
cDepartment of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
*Corresponding Author
Abstract Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and systems-level control. This is of great biological importance and practical significance in heterotrophic rice (Oryza sativa) endosperm and aleurone-subaleurone tissues, which are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was to broadly predict protein complex composition in the aleurone-subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measurements and protein complex predictions. The predicted complexes had predicted functions across diverse functional categories, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about systems-level post-translational control during the early stages of rice seed development.
|
|
|
|
관련 인터뷰 |
|
1. 논문관련 분야의 소개, 동향, 전망을 설명, 연구과정에서 생긴 에피소드
Co-fractionation mass spectrometry (CFMS)는 유전자조작이나 항체생산없이 내생 단백질 복합체 (endogenous protein complex)들을 분석하는 방법입니다. 이 분석법에서 Native protein complex들은 각자의 생화학적 특성 (예. 사이즈, 표면 전하 등) 따라 fractionation됩니다. 각각의 fractionation된... |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|