[DEBUG-WINDOW 처리영역 보기]
즐겨찾기  |  뉴스레터  |  오늘의 정보  |  e브릭몰e브릭몰 sale 회원가입   로그인
BRIC홈 한국을 빛내는 사람들
스폰서배너광고 안내  배너1 배너2 배너3 배너4
과학으로 본 코로나19 (COVID-19)
전체보기 추천논문 상위피인용논문 인터뷰 그이후 한빛사통계
조승우 (Seung-Woo Cho) 저자 이메일 보기
저자CV 보기
246 KB
조회 1630  인쇄하기 주소복사 트위터 공유 페이스북 공유 
Multiscale, Hierarchically Patterned Topography for Directing Human Neural Stem Cells into Functional Neurons

Kisuk Yang, Hyunjung Jung, Hak-Rae Lee §, Jong Seung Lee, Su Ran Kim, Ki Yeong Song, Eunji Cheong, Joona Bang ‡*, Sung Gap Im §*, and Seung-Woo Cho †*

Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
§ Department of Chemical and Biomolecular Engineering and KI for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

*Correspondence to Joona Bang, Sung Gap Im, Seung-Woo Cho

Various biophysical and biochemical factors are important for determining the fate of neural stem cells (NSCs). Among biophysical signals, topographical stimulation by micro/nanopatterns has been applied to control NSC differentiation. In this study, we developed a hierarchically patterned substrate (HPS) platform that can synergistically enhance the differentiation of human NSCs (hNSCs) by simultaneously providing microscale and nanoscale spatial controls to facilitate the alignment of the cytoskeleton and the formation of focal adhesions. The multiscale HPS was fabricated by combining microgroove patterns (groove size: 1.5 μm), prepared by a conventional photolithographic process, and nanopore patterns (pore diameter: 10 nm), prepared from cylinder-forming block copolymer thin films. The hNSCs grown on the HPS exhibited not only a highly aligned, elongated morphology, but also a greatly enhanced differentiation into neuronal and astrocyte lineages, compared to hNSCs on a flat substrate (FS) or single-type patterned substrates [microgroove patterned substrate (MPS) and nanopore patterned substrate (NPS)]. Interestingly, the application of the HPS directed hNSC differentiation toward neurons rather than astrocytes. The expression of focal adhesion proteins in hNSCs was also significantly increased on the HPS compared to the FS, MPS, and NPS, likely a result of the presence of more focal contact points provided by nanopore structures. Inhibition of both β1 integrin-mediated binding and the intracellular Rho-associated protein kinase pathway of hNSCs eliminated the beneficial effects of the HPS on focal adhesion formation and actin filament alignment, which subsequently reduced hNSC differentiation. More importantly, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials. The multiscale, hierarchically patterned topography would be useful for the design of functional biomaterial scaffolds to potentiate NSC therapeutic efficacy.

Keywords: hierarchically patterned substrate; topographical stimulation; human neural stem cell; focal adhesion; cytoskeleton alignment; differentiation

- 형식: Research article
- 게재일: 2014년 07월 (BRIC 등록일 2014-08-06)
- 연구진: 국내연구진태극기
- 분야: Pharmacology
Dot/Icm 제 4 유형 커플링 단백질 복합체의 선택적 이펙터 단백질 인식[Nat. Commun.]
발표: 김현민 (KAIST)
일자: 2020년 9월 29일 (화) 오후 02시 (한국시간)
언어: 한국어
참석자 접수신청하기

  댓글 0
Terumo bct
조승우 님 전체논문보기 >
관련분야 논문보기

Google (by Seung-Woo Cho)
Pubmed (by Seung-Woo Cho)
프리미엄 Bio일정 Bio일정 프리미엄 안내
대구경북과학기술원 (DGIST) 뇌·인지과학전공 온라인 전공설명회 개최
한빛사 홈  |  한빛사FAQ  |  한빛사 문의 및 제안
 |  BRIC소개  |  이용안내  |  이용약관  |  개인정보처리방침  |  이메일무단수집거부
Copyright © BRIC. All rights reserved.  |  문의 member@ibric.org
트위터 트위터    페이스북 페이스북   유튜브 유튜브    RSS서비스 RSS
에펜도르프코리아 광고