BioLab
Rutgers University, Institute for NanoBiomedical Research (나노바이오메디컬 연구실 KBLEE Group)
이기범 교수
연구실 소개
연구실 홈페이지안녕하세요. NanoBiomedical Research(KBLEE Group) 이기범입니다.
저는 2008년부터 미국 뉴저지 주립대학교인 Rutgers University의 Chemistry and Chemical Biology학과에서 교수로 재직 중이며, 현재 석좌교수직을 맡고 있습니다. Rutgers University는 한국에서는 다소 생소할 수 있지만, 뉴저지 주에서 가장 큰 주립대학 중의 하나로 주 정부의 전폭적인 지원을 받고 있습니다. 뉴저지 주는 뉴욕과 펜실베니아 사이에 위치하고 있으며, 한국인을 포함한 다양한 아시아계 및 여러 인종이 조화롭게 거주하고 있는 곳입니다. Rutgers University는 뉴저지 주 내에서 Princeton University와 함께 연구 중심 대학(Doctoral Universities–Very high researchactivity, R1 Group)으로 분류되며, Harvard University, Columbia University 등 미국 동부의 유수한 대학 및 연구 기관과 활발한 공동 연구를 수행하고 있습니다.
저희 연구팀은 나노기술과 화학생물학의 융합을 통해 암세포와 줄기세포의 신호전달 경로를 조절하는 혁신적인 방법론을 개발하는 데 주력하고 있습니다. 특히, 줄기세포와 암세포의 운명을 결정짓는 다양한 미세환경 신호를 규명하는 데 초점을 맞추고 있습니다. 이를 통해 줄기세포의 분화를 촉진하고 암세포의 사멸을 유도하는 새로운 전략을 모색하고자 합니다. 또한, 저희 연구팀은 암 치료, 분자 영상, 바이오 센싱 등 다양한 분야에 응용 가능한 혁신적인 나노 소재 개발에도 힘쓰고 있습니다. 이러한 나노 소재들은 암 진단 및 치료 분야에 패러다임 시프트를 일으킬 수 있을 것으로 기대하고 있습니다.
현재 저희 연구팀은 줄기세포 또는 암세포와 미세환경 간의 복잡한 상호작용을 심도 있게 이해하기 위해 다양한 분야에서 연구를 진행하고 있습니다. 앞으로도 나노기술과 화학생물학의 경계를 넘나드는 창의적인 연구를 통해 인류 건강에 기여할 수 있는 혁신적인 성과를 이루어 내고자 최선을 다하고 있습니다.
Ki Bum Lee, Ph.D. (이기범)
Distinguished Professor, Department of Chemistry and Chemical Biology, Rutgers University
Ecucation & Experiences
2008 - Present Department of Chemistry and Chemical Biology, Rutgers University
Rutgersfaculty in the following Programs, Depts, and Institutes: Biomedical Engineering,Chemical & Biochemical Engineering, Molecular Biosciences, Rutgers Stem Cell Research Center,Human Genetics Institute of New Jersey, Rutgers Brain Health Institute, Quantitative BiomedicineGraduate Program, Cancer Institute of New Jersey
2007 Postdoc The Scripps Research Institute
2004 Ph.D. Department of Chemistry, Northwestern University
연구분야
Long-Term Research Goals and Vision Statement:
Our group's research focuses on developing innovative methods that integrate nanotechnology and chemical biology to control stem cell and cancer cell fate by modulating their microenvironment. We aim to understandand manipulate the complex interactions between cells and their surroundings, including soluble cues, cell-cellinteractions, and insoluble/physical cues. [Fig.1]
Figure 1. Schematic diagram of our nanotechnology-based approaches for the regulation ofcancer/stem cell fate via three different kinds of microenvironmental cues in disease andinjury conditions.
Our primary goal is to developtransformative tools to enhancestem cell differentiation andcancer cell apoptosisin vitro,exvivo, andin vivo. We focus onneurodegenerative diseases andcentral nervous system (CNS)injuries, where themicroenvironment differssignificantly from normalconditions. To address thechallenges in current stem celltherapies, we have developedfourinnovative methods :
1.Multifunctional Nanomaterials as a Toolkit to Control Cancer and Stem Cells Fate
2.A nonviral genetic manipulation method mimicking natural transcription factors.
3.A multifunctional nanomaterial-based bioscaffold for controlled therapeutic molecule delivery.
4.A nanomaterial-based bioscaffold to enhance stem cell transplantation.
Our research aims to establish advanced nanotechnology tools as a new platform for gene manipulation andstem cell-based tissue engineering. This will ultimately leadto effective cellular reprogramming, cell replacementtherapies, and safe gene therapy for patients suffering from CNS injuries and neurodegenerative diseases.
Synthesizing and Developing a New Generation of Multifunctional Nanomaterials as a Toolkit to Control Cancer and Stem Cells Fate
Figure 2. A library of multifunctional nanoparticles which have been developed by KBLEEgroup for bio-applications.
Development of a Nanoparticle-based Artificial Transcription Factor (NanoScript) for Effective Gene Regulation in Cellular Reprogramming
Transcription factors (TFs), which are proteins regulating cell function and behavior, are routinely delivered into stem cells or somatic cells using conventional methods such as viruses or plasmids, which pose several safety concerns, including random DNA integration and formation of cancerous teratomas. Hence, stem cell-based therapies cannot be effectively translated into the clinic to treat patients. As an alternative approach to regulate gene expression for stem cell differentiation, recent efforts have focused on developing a class of small molecules called synthetic transcription factors (STFs), which are small molecules that can mimic the function of TFs. Even though STFs have been demonstrated to activate genes in a non-viral manner, translating them for stem cell differentiation or clinical application has proven difficult due to poor membrane permeability, propensity for intracellular degradation, and inadequate nuclear targeting.
Figure 3. Schematic diagram of NanoScript
NanoScript replicates the multi-domain structure of TF proteins by tethering three major components,representing the primary domains [nuclear localization signal (NLS) domain, DNA-binding domain (DBD), andactivation domain (AD)] found on endogenous TFs, in close proximity on a single gold nanoparticle (AuNP). Inaddition to serving as a delivery vehicle for STFs, the AuNP itself functions as a component of the NanoScript,mimicking the linker domain (LD) of natural TF proteins. NanoScript emulates the gene-regulating function ofTFs by translocating into the nucleus, binding specifically to DNA, and recruiting transcriptional machinery toeither upregulate or repress genes of interest
Combinatorial Nanomaterial-Based Approaches to generate Stem Cell-based Neural Networks and Detect Neurotransmitters in Stem Cell-derived Neural Interface
The search for novel ways to explore and better understand the functions of insoluble/physical cues on the behaviors of stem cells is vital in the areas of regenerative medicine, as the insoluble/physical microenvironmental signals significantly affect the behaviors of cells, including stem cell adhesion, growth, migration, and differentiation. In this context, stem cells can sense and consequently respond to the physical microenvironment in which they reside. For instance, changes in cell shape and alignment are vital cellular responses to surface properties of the underlying substrate. Several approaches based on surface chemistry and nano/microfabrication have been examined over the last decade to comprehend these phenomena. However, establishing controlled and reliable methodologies to guide stem cell differentiation into specialized cell lineages via modulating insoluble/physical cues remains to be achieved. To address the aforementioned challenges, we have focused on two overarching strategies to control this process selectively. In our first approach, we modulated the surface chemistry of 2D substrates to control neural stem cell morphology and the resulting differentiation process. Patterned surfaces, consisting of immobilized extracellular matrix proteins and/or nanomaterials, were generated and observed to guide neuronal differentiation and polarization. Building on the abovementioned approaches, we further tuned the cell-substrate interactions in a third approach by introducing nanotopographical features in the form of nanoparticle films and nanofibers. Besides providing a 3D surface topography, our unique nano-scaffolds were observed to enhance gene delivery, facilitate axonal alignment, selectively control differentiation into neural cell lines of interest, and generate stem cell-based neural interfaces.
Advanced Stem Cell Therapies for CNS injuries and Advanced in vivo Drug/Gene Delivery using Bioinspired Hybrid Nanoscaffolds
Central nervous system (CNS) injuries [e.g., spinal cord injury (SCI) and traumatic brain injury (TBI)] result in many cellular dysfunctions that may cause severe and permanent neurological deficits. Several current therapeutic approaches aim to bridge the lesion site through cellular transplantation to restore neural signaling, reduce inflammation, and prevent subsequent damage to the injured area. Given the intrinsically limited regenerative potential of the central nervous system (CNS) and the complex inhibitory environment of the injured spinal cord, effective strategies to generate a robust population of functional neurons derived from autologous stem cells [induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs)] re-establishing the damaged neural circuitry are urgent clinical needs. However, several pertinent obstacles hinder successful transplantation strategies. First, due to the inflammatory nature of the injured spinal cord, most NSCs die soon after transplantation. Second, the extracellular matrix of the injured spinal cord is not very conducive to NSC survival and differentiation. Thus, we will address these challenges by combining a novel bioscaffold with therapeutic molecules (e.g., small molecules, biologics, genetic materials-RNAs/DNAs) to reduce inflammation and promote neuronal differentiation.
연구성과
[최근 4년, 2021~ ]
연구실 구성원
지도교수: 이기범
(2024년 현재)
Post Docs / Visiting Scholars: Dr. Euiyeon Lee, Dr. Hye Kyu Choi, Dr. Teobaldo Molina, Dr. Wankyu Ko, Dr. Mehdi Kamali, Dr. Kim-Phuong Le, Dr. Hongwon Kim, Dr. MinKyu Shin
Graduate students: Yannan Hou, Brandon Conklin, Meizi Chen, Callan McLoughlin, Joshua Stein, Sarah Nevins, Li Ling Goldston, Hyunjun Jang, Diana Hadid, Annelisse
Undergraduate Students: Aisha Mansoor, Margaret Lin, Lancy Zheng, Rohan Kulbe, Kevin Trinh, Divyasri Moulee, Samir Itani
Contact : kblee@rutgers.edu
하고싶은 이야기
본 연구실은 화학, 생물학, 공학 분야의 다양한 배경을 가진 학생과 박사후 연구원들로 구성되어 있으며, 구성원들 간의 긴밀한 협업을 통해 나노기술을 기반으로 한 재생의학 응용 연구를 수행하고 있습니다. 본 연구실에서는 다학제적인 접근 방식을 통해 혁신적인 연구를 진행하고 있으며, 이를 통해 재생의학과 나노의학 분야에서의 새로운 돌파구를 마련하고자 합니다.
특히, 본 연구실에서는 졸업 후 또는 연구 활동 이후 미국 진출을 목표로 하는 학생 및 박사후 연구원 분들을 적극 환영하고 있습니다. 본 연구실에서의 연구 경험과 성과는 미국과 한국에서의 학업 및 연구 활동에 큰 도움이 될 것으로 기대됩니다. 또한, 본 연구실에서는 구성원들의 역량 강화와 경력 개발을 위해 다양한 지원을 제공하고 있습니다.
창의적이고 도전적인 마인드를 가진 학생 및 박사후 연구원 분들의 많은 관심과 지원 바랍니다. 본 연구실에서 여러분의 잠재력을 마음껏 발휘하며, 재생의학과 나노의학 분야에서의 혁신을 이끌어나가는 우수한 인재로 성장하시기원하시는 분들은 적극적으로 연락 주셨으면 합니다.
[진행중인 연구과제]
1) 미 국립보건원 (다수)
2) 뉴저지 암 연구, 척수손상 연구
3) 미 국립과학재단
4) 알츠하이머 협회
[Contact information]
Email: kblee@rutgers.edu
Lab homepage: https://kblee.rutgers.edu/
본 정보는 해당 기관에서 제공한 자료를 바탕으로 구성된 내용으로, BRIC에서 자체 생산한 정보가 아님을 밝혀드립니다.
소개된 내용에서 중요하게 판단되는 부분은 해당 기관에 추가적으로 사실 확인 작업을 하시길 부탁드립니다.
내용의 업데이트 또는 변경을 원하시면 관리자(interview@ibric.org)에게 연락 바랍니다.