한빛사논문
Chae Woo Lim 1 †, Soongon Jeong 1 †, Woonhee Baek 1 †, Hoyeol Choi 1, Sung Chul Lee 1 *
1Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea.
†These authors contributed equally
*Corresponding author: correspondence to Sung Chul Lee
Abstract
The abscisic acid (ABA) signaling pathway is essential for plant response to abiotic stresses and can be modulated positively or negatively by MAPKKK proteins. This study focuses on the functional characterization of CaMEKK17, a MAPKKK previously recognized for its rapid induction under drought stress. Functional analyses demonstrated that CaMEKK17 is an active serine/threonine kinase with a conserved catalytic domain that is crucial for its kinase activity. CaMEKK17 silencing in pepper plants resulted in reduced drought tolerance, characterized by increased transpirational water loss and impaired ABA-mediated stomatal closure. Conversely, CaMEKK17 overexpression in Arabidopsis increased kinase activity, enhancing ABA sensitivity and drought tolerance. Further investigation revealed that CaMEKK17 interacts with pepper group A type 2C protein phosphatases (PP2Cs), particularly CaAITP1 and CaAIPP1, which inhibit its kinase activity. Protein–protein interactions mediated inhibition by CaAITP1, whereas CaAIPP1 relied on its phosphatase activity. Double gene silencing of CaMEKK17 and CaAITP1 demonstrated that CaMEKK17 functions downstream of CaAITP1 in ABA-mediated drought tolerance. Taken together, our findings suggest that CaMEKK17 positively modulates drought tolerance in pepper plants but may be inhibited by PP2Cs.
논문정보
관련 링크
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기