한빛사논문
Yoonbin Ji1, Taehyeon Kim1, Daehoon Han2, and Jong Bum Lee1*
1Department of Chemical Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea
2School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
Corresponding Author : Jong Bum Lee
Abstract
Recently, there has been a growing demand for the development of biomass-based plastic materials as a solution to address the pressing issue of accumulated plastic waste. Alongside biodegradable plastics derived from petroleum and organisms, DNA-based materials have emerged as potential substitutes for nonbiodegradable plastics. Here, we introduce DNA Bioplastics that are synthesized through a one-pot process involving DNA and a cross-linker. These DNA Bioplastics exhibit key characteristics that closely resemble conventional plastic materials, including thermal-responsive volumetric transition, thermoplasticity, and solidification, leveraging the inherent properties of DNA. By manipulating the cross-linking density of DNA Bioplastic during the reaction, we have successfully demonstrated the ability to achieve a wide range of desirable physical properties. The versatility of DNA as a renewable source and the eco-friendly disposal options for DNA Bioplastics open up new avenues for the disposable bioplastic materials, including disposable medical devices.
논문정보
관련 링크
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기