한빛사논문
Chang-Joo Park 1, Yoon-A Lee 1, Seung-Min Yoo 1, Geon A Kim 2, Myung-Shin Lee 1, Changhoon Park 1
1Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea.
2Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu, Republic of Korea.
CORRESPONDING AUTHORS: Myung-Shin Lee, Changhoon Park
Abstract
Dengue virus, which belongs to the Flaviviridae family, can induce a range of symptoms from mild to severe, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While infectious cloning technology is a useful tool for understanding viral pathogenesis and symptoms, it exhibits limitations when constructing the entire Flavivirus genome. The instability and toxicity of the genome to bacteria make its full-length construction in bacterial vectors a time-consuming and laborious process. To address these challenges, we employed the modified infectious subgenomic amplicon (ISA) method in this study, which can potentially be a superior tool for reverse genetic studies on the dengue virus. Using ISA, we generated recombinant dengue viruses de novo and validated their robust replication in both human and insect cell lines, which was comparable to that of the original strains. Moreover, the efficiency of ISA in genetically modifying the dengue virus was elucidated by successfully inserting the gene for green fluorescence protein into the genome of dengue virus serotype 4. Overall, this study highlighted the effectiveness of ISA for genetically engineering the dengue virus and provided a technical basis for a convenient reverse genetics system that could expedite investigations into the dengue virus.
논문정보
관련 링크
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기