한빛사논문
Ruixue Xiao 1 †, Oh Youngjun 2 †, Xiuxiu Zhang 1, NguyenThO Nguyen Thi 2, Hai Lu 1, Inhwan Hwang 2 *
1College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.
2Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
†Ruixue Xiao and Oh Youngjun authors are equally contributed to this study.
*Corresponding author: correspondence to Inhwan Hwang
Abstract
Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of β-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and β-oxidation of polyunsaturated fatty acids under osmotic stress.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기