한빛사논문
Meehyun Ko 1, Jun Young Lee 2,3, Young Sup Shin 2,3, Sangeun Jeon 1, Subeen Myung 3,4, Jung-Eun Cho 3, Min Seong Jang 5, Jong Hwan Song 3, Hyoung Rae Kim 3, Hyeung-Geun Park 2, Chul Min Park 3,4, Seungtaek Kim 1
1Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea.
2Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
3Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
4Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, Republic of Korea.
5Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon, Republic of Korea.
Meehyun Ko and Jun Young Lee contributed equally to this work.
CORRESPONDING AUTHOR : Seungtaek Kim, Chul Min Park, Hyeung-geun Park
Abstract
The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기