한빛사논문
Jeon Il Kang a, Kyung Min Park a,b
aDepartment of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
bResearch Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
Corresponding author: Kyung Min Park
Abstract
Recent trends in the design of regenerative materials include the development of bioactive matrices to harness the innate healing ability of the body using various biophysicochemical stimuli (defined as in situ tissue regeneration). Among these, hyperoxia (>21% pO2) is a well-known therapeutic factor for promoting tissue regeneration, such as immune cell recruitment, cell proliferation, angiogenesis, and fibroblast differentiation into myofibroblast. Although various strategies to induce hyperoxia are reported, developing advanced hyperoxia-inducing biomaterials for tissue regeneration is still challenging. In this study, a catalase-immobilized syringe (defined as an Oxyringe) via calcium peroxide-mediated surface modification is developed as a new type of oxygen-supplying system. Hyperoxia-inducible hydrogels are fabricated utilizing Oxyringe. This hydrogel plays a role as a physical barrier for hemostasis. In addition, hyperoxic matrices induce transient hyperoxia in vivo (up to 46.0% pO2). Interestingly, the hydrogel-induced hyperoxia boost the initial macrophage recruitment and rapid inflammation resolution. Furthermore, hyperoxic oxygen release of hydrogels facilitates neovascularization and cell proliferation involved in the proliferation phase, expediting tissue maturation related to the remodeling phase in wound healing. In summary, Oxyringe has excellent potential as an advanced oxygen-supplying platform to create hyperoxia-inducing hydrogels for in situ tissue regeneration.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기