한빛사논문
Jaeun Phyo1, Wonjun Ko1, Eunjin Jeon1, Heung-Il Suk2*
1Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
2Department of Artificial Intelligence and the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
*Corresponding author: Heung-Il Suk
Abstract
Sleep staging is essential for sleep assessment and plays a vital role as a health indicator. Many recent studies have devised various machine/deep learning methods for sleep staging. However, two key challenges hinder the practical use of those methods: 1) effectively capturing salient waveforms in sleep signals and 2) correctly classifying confusing stages in transitioning epochs. In this study, we propose a novel deep neural-network structure, TransSleep, that captures distinctive local temporal patterns and distinguishes confusing stages using two auxiliary tasks. In particular, TransSleep captures salient waveforms in sleep signals by an attention-based multiscale feature extractor and correctly classifies confusing stages in transitioning epochs, while modeling contextual relationships with two auxiliary tasks. Results show that TransSleep achieves promising performance in automatic sleep staging. The validity of TransSleep is demonstrated by its state-of-the-art performance on two publicly available datasets: 1) Sleep-EDF and 2) MASS. Furthermore, we performed ablations to analyze our results from different perspectives. Based on our overall results, we believe that TransSleep has immense potential to provide new insights into deep-learning-based sleep staging.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기