한빛사논문
Noehyun Myung1, Seokha Jin1, Hyung Joon Cho, Hyun-Wook Kang
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea
1These authors contributed equally to this work.
Corresponding authors: Hyung Joon Cho, Hyun-Wook Kang
Abstract
Three-dimensional printing enables precise and on-demand manufacture of customizable drug delivery systems to advance healthcare toward the goal of personalized medicine. However, major challenges remain in realizing personalized drug delivery that fits a patient-specific drug dosing schedule using local drug delivery systems. In this study, a user-designed device is developed as implantable therapeutics that can realize personalized drug release kinetics by programming the inner structural design on the microscale. The drug release kinetics required for various treatments, including dose-dense therapy and combination therapy, can be implemented by controlling the dosage and combination of drugs along with the rate, duration, initiation time, and time interval of drug release according to the device layer design. After implantation of the capsular device in mice, the in vitro–in vivo and pharmacokinetic evaluation of the device is performed, and the therapeutic effect of the developed device is achieved through the local release of doxorubicin. The developed user-designed device provides a novel platform for developing next-generation drug delivery systems for personalized and localized therapy.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기