한빛사논문
Hye Min Songa,1, JeongChan Joob,1, Seo Hyun Lima, Hye Jin Lima, Siseon Leeb, Si Jae Parka
aDepartment of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
bDepartment of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
Abstract
Petrochemical-based plastics cause environmental pollution and threaten humans and ecosystems. Polyhydroxyalkanoate (PHA) is considered a promising alternative to nondegradable plastics since it is eco-friendly and biodegradable polymer having similar properties to conventional plastics. PHA’s material properties are generally determined by composition and type of monomers in PHA. PHA can be designed in tailor-made manner for their suitable application areas. Among many monomers in PHAs, ω-hydroxalkanoates such as 3-hydroxypropionate (3HP), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx) and medium-chain-length 3-hydroxyalkanoate such as 3-hydroxyhexanoate (3HHx) and 4-hydroxyvalerate (4HV), have been examined as potential monomers able to confer amorphous and elastomer properties when these are incorporated as comonomer in poly(3-hydroxybutyrate) copolymer that has 3HB as main monomer along with comonomers in different monomer fraction. Herein, recent advances in production of PHAs designed to have amorphous and elastomeric properties from renewable sources such as lignocellulose, levulinic acid, crude glycerol, and waste oil are discussed.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기