한빛사논문
KAIST
Tae Won Nam,†,# Yeonkyung Park,‡,# Yeon Sik Jung,*,† and Hyun Gyu Park*,‡
#These authors contributed equally: Tae Won Nam, Yeonkyung Park.
†Department of Materials and Science and Engineering,
‡Department of Chemical and Biomolecular Engineering (BK 21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
Corresponding Author Y. S. Jung, H. G. Park.
Abstract
We herein describe a polychromatic quantum dot array (PQDA) to compose a community signal ensemble enabling accurate and precise quantification of miRNAs in a multiplexed manner. Advanced multicomponent ultrahigh-resolution patterning technique achieved by capsulation-assisted transfer printing following self-assembly-based poly(methyl methacrylate) (PMMA) patterning is utilized to manufacture the PQDA, which is designed to discharge a target miRNAs-specific set of fluorescent quantum dots (QDs) through the activity of duplex-specific nuclease (DSN). On the basis of the community signal ensemble produced by the discharged QD profiles, target miRNAs are very specifically identified down to a femtomolar level (1.27 fM) in a multiplexed manner over a wide dynamic range of up to 6 orders of magnitude. The practical diagnostic capability of this strategy is also demonstrated by reliably identifying breast cancer-specific miRNAs from heterogeneous cancer cell lysates.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기