한빛사논문
Md Mehedi Hasan1,*, Sho Tsukiyama2, Jae Youl Cho3, Hiroyuki Kurata2, Md Ashad Alam1, Xiaowen Liu1, Balachandran Manavalan4,*, and Hong-Wen Deng1,*
1Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112 USA
2Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
3Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea
4Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea
*Corresponding authors
Abstract
As one of the most prevalent post-transcriptional epigenetic modifications, N5-methylcytosine (m5C), plays an essential role in various cellular processes and disease pathogenesis. Therefore, it is important accurately identify m5C modifications in order to gain a deeper understanding of cellular processes and other possible functional mechanisms. Although a few computational methods have been proposed, their respective models have been developed using small training datasets. Hence, their practical application is quite limited in genome-wide detection. To overcome the existing limitations, we propose Deepm5C, a bioinformatics method to identify RNA m5C sites in the throughout human genome. To develop Deepm5C, we constructed a novel benchmarking dataset and investigated a mixture of three conventional feature encoding algorithms and a feature derived from word embedding approaches. Afterwards, four variants of deep learning classifiers and four commonly used conventional classifiers were employed and trained with the four encodings, ultimately obtaining 32 baseline models. A stacking strategy is effectively utilized by integrating the predicted output of the optimal baseline models and trained with a 1-D convolutional neural network. As a result, the Deepm5C predictor achieved excellent performance during cross-validation with a Matthews correlation coefficient and accuracy of 0.697 and 0.855, respectively. The corresponding metrics during the independent test were 0.691 and 0.852, respectively. Overall, Deepm5C achieved a more accurate and stable performance than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, Deepm5C is expected to assist community-wide efforts in identifying putative m5Cs and formulate the novel testable biological hypothesis.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기