한빛사논문
Jaewoo Lima,b, Sujin Kimc, Seung Jae Ohd, Song Mi Hanf,g,h, So Young Moong, Byunghoon Kanga, Seung Beom Seoa,e, Soojin Janga,b, Seong Uk Sona,b, Juyeon Junga,b, Taejoon Kanga, Sun Ah Parkf,g,h, Minho Moonc,**, Eun-Kyung Lima,b,*
a Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea b Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea c Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, South Korea d YUHS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea e Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, South Korea f Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea g Department of Neurology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea h Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
* Corresponding author.
** Corresponding author.
Abstract
Alzheimer's disease (AD), one of the leading senile disorders in the world, causes severe memory loss and cognitive impairment. To date, there is no clear cure for AD. However, early diagnosis and monitoring can help mitigate the effects of this disease. In this study, we reported a platform for diagnosing early-stage AD using microRNAs (miRNAs) in the blood as biomarkers. First, we selected an appropriate target miRNA (miR-574-5p) using AD model mice (4-month-old 5XFAD mice) and developed a hydrogel-based sensor that enabled high-sensitivity detection of the target miRNA. This hydrogel contained catalytic hairpin assembly (CHA) reaction-based probes, leading to fluorescence signal amplification without enzymes and temperature changes, at room temperature. This sensor exhibited high sensitivity and selectivity, as evidenced by its picomolar-level detection limit (limit of detection: 1.29 pM). Additionally, this sensor was evaluated using the plasma of AD patients and non-AD control to validate its clinical applicability. Finally, to use this sensor as a point-of-care-testing (POCT) diagnostic system, a portable fluorometer was developed and verified for feasibility of application.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기