구.농수식품
전북대학교 수의과대학
Amal Senevirathne, Chamith Hewawaduge and John Hwa Lee*
College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
*Correspondence
Abstract
Efficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek’s disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek’s disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기