한빛사논문
Tai Duc Tran1, Phuong Thy Nguyen1, Thao Nguyen Le, Moon Il Kim
Department of BioNano Technology, Gachon University, Gyeonggi, 13120, Republic of Korea
1These authors contributed equally to this work.
*Corresponding author.
Abstract
Laccases are important multicopper oxidases that are involved in many biotechnological processes; however, they suffer from poor stability as well as high cost for production/purification. Herein, we found that DNA-copper hybrid nanoflowers, prepared via simple self-assembly of DNA and copper ions, exhibit an intrinsic laccase-mimicking activity, which is significantly higher than that of control materials formed in the absence of DNA. Upon testing all four nucleobases, we found that hybrid nanoflowers composed of guanine-rich ssDNA and copper phosphate (GNFs) showed the highest catalytic activity, presumably due to the affirmative coordination between guanine and copper ions. At the same mass concentration, GNFs had similar Km but 3.5-fold higher Vmax compared with those of free laccase, and furthermore, they exhibited significantly-enhanced stability in ranges of pH, temperature, ionic strength, and incubation period of time. Based on these advantageous features, GNFs were applied to paper microfluidic devices for colorimetric detection of diverse phenolic compounds such as dopamine, catechol, and hydroquinone. In the presence of phenolic compounds, GNFs catalyzed their oxidation to react with 4-aminoantipyrine for producing a colored adduct, which was conveniently quantified from an image acquired using a conventional smartphone with ImageJ software. Besides, GNFs successfully catalyzed the decolorization of neutral red dye much faster than free laccase. This work will facilitate the development of nanoflower-type nanozymes for a wide range of applications in biosensors and bioremediation.
Keywords : DNA nanoflowers, Laccase-mimicking nanozymes, Paper microfluidic device, Colorimetric biosensors, Phenol detection
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기