구.농수식품
Jung-Soo Leea, Inyoung Choia, Jaejoon Hana,b,*
aDepartment of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
bDepartment of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
*Corresponding author.
Abstract
Antimicrobial biocomposite films were prepared using agar (AG) and polyvinyl alcohol (PVA) as polymer matrix materials and cinnamon bark oil (CBO) as antimicrobial agent. AG and PVA were blended with different mixing ratios. The addition of AG improved the overall water resistance properties of the composite films. To evaluate the effects of temperature and relative humidity (RH) on the release kinetics of CBO from films, CBO release kinetics were analyzed under the 9 combinations of temperature and RH. Then, mathematical modeling of obtained data was conducted using Peleg, Ritger-Peppas, and Peppas-Sahlin models to investigate the release mechanisms of CBO. Consequently, the CBO release rate proportionally increased with the temperature and RH, with the RH being the main factor affecting the release behavior of CBO. In vitro antimicrobial activity tests against gram-positive and gram-negative bacteria showed that the developed composite films have high applicability as an antimicrobial food packaging material.
논문정보
관련 링크
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기