한빛사논문
Younguk Cho, Sanghoon Park, Juyoung Lee, and Ki Jun Yu*
School of Electrical Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Korea
Y.C., S.P., and J.L. contributed equally to this work.
*To whom correspondence should be addressed.
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain–machine interfaces or brain–computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Keywords : biointegrated electronics, flexible electronics, neural implants
논문정보
관련 링크
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기