구.농수식품
한국과학기술연구원
Jae Hoon Lee1, Hyo Jun Won1,3, Phuong Hoang Nguyen Tran2,4, Sun‐mi Lee2,4,5, Ho‐Youn Kim1, Je Hyeong Jung1,*
1Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
2Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
3Division of Bio- Medical Science & Technology, KIST School, University of Science and Technology (UST), Daejeon, Republic of Korea
4Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, Republic of Korea
5Green School, Korea University, Seoul, Republic of Korea
*Correspondence
Abstract
Barley is a major cereal crop with a wide ecological range, and its lignocellulosic residues have the potential to be used as a feedstock for various purposes, including biofuel production. Lignocellulosic biomass is an abundant renewable source of carbon energy. However, its heterogeneous properties and intrinsic recalcitrance caused by cell wall lignification have lowered the biorefinery efficiency. The reduced lignin content and/or altered lignin structure have been desirable traits for lignocellulosic feedstock. We report the reduction of lignin content in barley by CRISPR/Cas9‐mediated mutagenesis of caffeic acid O‐methyltransferase 1 (HvCOMT1), the lignin biosynthetic gene responsible for lignin syringyl unit formation. The transgene‐free, homozygous HvCOMT1 mutant was generated and analyzed for its cell wall composition, saccharification efficiency, and bioethanol production performance. The mutant had 14% lower total lignin content and 34% higher fermentable glucose recovery rate, compared to the wild‐type (WT). The bioethanol concentration and yield from the hydrolysates of the mutant biomass were 14.3 g/L and 0.46 g/g total sugar, respectively. This result was 34% and 12% higher than those obtained from WT (10.7 g/L and 0.41 g/g total sugar). Under controlled environmental conditions, the overall growth performance of the HvCOMT1 mutant was similar to WT, with no distinct morphological variations between them. The HvCOMT1 mutant barley could offer improved quality lignocellulosic feedstock for efficient lignocellulosic biofuel production.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기