상위피인용논문
Kwang Lee, Chang Yoel Lee, Hyungil Jung*
Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Republic of Korea
*Corresponding author
Abstract
Dissolving microneedles, three-dimensional polymer structures with microscale cross-sectional dimensions, have been introduced as a means of safe transdermal drug delivery. Most dissolving microneedles have been fabricated using a traditional micro-casting method that cures biopolymers within three-dimensional mold, nevertheless, repeated molding process may cause damage to encapsulated drugs, a critical hurdle for clinical application. Here, we describe the stepwise controlled drawing technique that can directly fabricate dissolving microneedle from maltose by precise controlling the drawing time and the viscosity of the maltose. Controlled drawing shaped the particular sharp-conical microneedles of 1200 μm length with tip diameter of 60 μm, and dissolved within 20 min in-vivo after inserting to the skin. This technique surpasses the limitations of micro-casting for dissolving microneedle. Furthermore, transdermal delivery of impermeable hydrophilic molecules such as ascorbic acid-2-glucoside and niacinamide was confirmed as inhibition of cutaneous hypermelanosis. We anticipate that controlled drawing technique will be suitable to design dissolving microneedles for use in minimally invasive transcutaneous drug delivery to patients.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기