한빛사논문
Minji Ha, So Hee Nam, Kyunjong Sim, Seung-Eun Chong, Jiyeon Kim, Yuna Kim, Yan Lee*, JwaMin Nam*
Department of Chemistry, Seoul National University, Seoul 08826, South Korea
*Corresponding authors
Abstract
Photothermal therapy (PTT) exploits nanomaterials with optimal heat conversion and cellular penetration using near-infrared (NIR) laser irradiation. However, current PTT agents suffer from inefficient heat conversion, poor intracellular delivery, and a high dose of probes along with excessive laser irradiation, causing limited therapeutic outcomes. Here, bumpy Au triangular nanoprisms (BATrisms) are developed for increasing the surface area, improving cell penetration, shifting the absorption peak to the NIR region, and enhancing the photothermal conversion efficiency (∼86%). Further, leucine (L)- and lysine (K)-rich cell-penetrating peptides (LK peptides) were employed to largely improve their cellular uptake efficiency. Importantly, a significant in vivo therapeutic efficacy with LK-BATrisms was demonstrated in a triple-negative breast cancer xenograft mice model. A very small dose of LK-BATrism (2.5 μg Au) was enough to exert antitumor efficacy under very low laser power (808 nm, 0.25 W/cm2), causing minimal tissue damages while very efficiently killing cancer cells.
논문정보
관련 링크
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기