한빛사논문
Ki-Baek Jeonga,1,2, Sang-Mook Youa,2, Jin-Sung Parka, Ke Luoa, In-Seong Hwanga, Hwankyu Leeb, Young-Rok Kima,*
aGraduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
bDepartment of Chemical Engineering, Dankook University, Yongin, 16891, South Korea
1Present address: Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
2K.B.J. and S.M.Y. contributed equally to this work.
*Corresponding author.
Abstract
Nanopores have been emerged as a powerful tool for analyzing the structural information and interactional properties of a range of biomolecules. The spatial resolution of nanopore is determined by the diameter and effective thickness of its constriction region, but the presence of vestibule or stem structure in protein-based nanopore could negatively affect the sensitivity of the nanopore when applied for genome sequencing and topological analysis of DNA. Recently, alpha-hederin (Ah) has been reported to form a sub-nanometer scale pore structure in lipid membrane. With the simple structure and extremely small effective thickness, the Ah nanopore was shown to discriminate four different types of nucleotides. However, identification of a certain nucleotide in a strand of DNA, which is essential for genome sequencing, remains challenging. Here, we investigated the resolving capability of Ah nanopore to discriminate few nucleotides in a strand of single-stranded DNA, and the factors determining the sensitivity of Ah nanopore. The Ah nanopore was shown to be able to identify as few as three adenosine nucleotides in a strand of poly cytidine, in which the dwell time of the additional current blockade that represents the adenosine residue was in good agreement with their physical length. We also found that the lateral tension and chain pressure generated around the nanopore were influenced by pore's diameter and played as a dependent variables to determine the geometry of nanopore's constriction as well as the spatial resolution of the Ah nanopore.
논문정보
관련 링크
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기