한빛사논문
Jaehun Lee, Misong Ju, Ouk Hyun Cho, Younghye Kim, and Ki Tae Nam*
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
*To whom correspondence should be addressed.
Abstract
The self-assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure-property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic-complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc-peptide, and aromatic dipeptides, are widely studied. Recently, studies on material synthesis and the application of tyrosine-rich short peptide-based systems have demonstrated that tyrosine units serve as not only excellent assembly motifs but also multifunctional templates. Tyrosine has a phenolic functional group that contributes to π-π interactions for conformation control and efficient charge transport by proton-coupled electron-transfer reactions in natural systems. Here, the critical roles of the tyrosine motif with respect to its electrochemical, chemical, and structural properties are discussed and recent discoveries and advances made in tyrosine-rich short peptide systems from self-assembled structures to peptide/inorganic hybrid materials are highlighted. A brief account of the opportunities in design optimization and the applications of tyrosine peptide-based biomimetic materials is included.
Keywords : peptide assembly, peptide-based hybrid materials, tyrosine, tyrosine-rich peptides
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기