한빛사논문
Abstract
1 Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
2 Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
3 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
*Corresponding author
Laurence J. Zwiebel
Background
Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO2) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown.
ResultsHere, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO2-responsive and characterized by the coexpression of three receptors that confer CO2 responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses.
ConclusionsOur results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.
Footnotes
4 These authors contributed equally to this work.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기