구.농수식품
Abstract
Choon-Tak Kwon1†, Suk-Hwan Kim1†, Giha Song1, Dami Kim1, Nam-Chon Paek 1 2*
1 Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
2 Crop Biotechnology Institute, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
*Corresponding author
†Equal contributors
Abstract
Background
NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB. OsPORA is expressed in the dark during early leaf development; OsPORB is expressed throughout leaf development regardless of light conditions. The faded green leaf (fgl) is a loss-of-function osporB mutant that displays necrotic lesions and variegation in the leaves due to destabilized grana thylakoids, and has increased numbers of plastoglobules in the chloroplasts. To investigate whether the function of OsPORA can complement that of OsPORB, we constitutively overexpressed OsPORA in fgl mutant.
Results
In the 35S:OsPORA/fgl (termed OPAO) transgenic plants, the necrotic lesions of the mutant disappeared and the levels of photosynthetic pigments and proteins, as well as plastid structure, were recovered in developing leaves under natural long days in the paddy field and under short days in an artificially controlled growth room. Under constant light conditions, however, total chlorophyll and carotenoid levels in the developing leaves of OPAO plants were lower than those of wild type. Moreover, the OPAO plants exhibited mild defects in mature leaves beginning at the early reproductive stage in the paddy field.
Conclusions
The physiological function of OsPORB in response to constant light or during reproductive growth cannot be completely replaced by constitutive activity of OsPORA, although the biochemical functions of OsPORA and OsPORB are redundant. Therefore, we suggest that the two OsPORs have differentiated over the course of evolution, playing distinct roles in the adaptation of rice to the environment.
Keywords : Rice, Faded green leaf, OsPORA, OsPORB, Chlorophyll synthesis
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기