한빛사논문
Cheol-Hee Shina, Min-Goo Leea, Jikhyon Hana, Seong-In Jeonga, Byung-Kyu Ryua, and Sung-Gil Chia,1
aDepartment of Life Sciences, Korea University, Seoul 02841, Korea
1To whom correspondence should be addressed.
Author contributions: C.-H.S., M.-G.L., and S.-G.C. designed research; C.-H.S., M.-G.L., J.H., S.-I.J., and B.-K.R. performed research; C.-H.S., M.-G.L., J.H., S.-I.J., B.-K.R., and S.-G.C. analyzed data; and C.-H.S. and S.-G.C. wrote the paper.
Abstract
XIAP-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human neoplasms. However, the molecular mechanism underlying its proapoptotic function remains largely undefined. Here, we report that XAF1 induction by heavy metals triggers an apoptotic switch of stress response by destabilizing metallothionein 2A (MT2A). XAF1 directly interacts with MT2A and facilitates its lysosomal degradation, resulting in the elevation of the free intercellular zinc level and subsequent activation of p53 and inactivation of XIAP. Intriguingly, XAF1 is activated as a unique transcription target of metal-regulatory transcription factor-1 (MTF-1) in signaling apoptosis, and its protein is destabilized via the lysosomal pathway by MTF-1-induced MT2A under cytostatic stress conditions, indicating the presence of mutual antagonism between XAF1 and MT2A. The antagonistic interplay between XAF1 and MT2A acts as a key molecular switch in MTF-1-mediated cell-fate decisions and also plays an important role in cell response to various apoptotic and survival factors. Wild-type (WT) XAF1 but not MT2A binding-deficient mutant XAF1 increases the free intracellular zinc level and accelerates WT folding of p53 and degradation of XIAP. Consistently, XAF1 evokes a more drastic apoptotic effect in p53+/+ versus isogenic p53-/- cells. Clinically, expression levels of XAF1 and MT2A are inversely correlated in primary colon tumors and multiple cancer cell lines. XAF1-depleted xenograft tumors display an increased growth rate and a decreased apoptotic response to cytotoxic heavy metals with strong MT2A expression. Collectively, this study uncovers an important role for XAF1-MT2A antagonism as a linchpin to govern cell fate under various stressful conditions including heavy metal exposure.
XAF1, metallothionein, MTF-1, heavy metal, apoptosis
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기