구.추천논문
Abstract
Chany Leea, Young-Jin Jungb, Sang Jun Leea, Chang-Hwan Ima
a Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
b Department of Radiological Science, Dongseo University, Busan, Republic of Korea
Corresponding author at: Department of Biomedical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
Abstract
Background
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS.
New method
COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed.
Results
As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency.
Comparison with existing methods
We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency.
Conclusions
In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS.
Keywords : Neuromodulation; Transcranial direct current stimulation (tDCS); Finite element method (FEM); Electrostatic field; MATLAB toolbox
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기