구.농수식품
Abstract
Jassy Mary S. Lazartea, Young Rim Kima, Jung Seok Leea, Se Pyeong Ima, Si Won Kima, Jaesung Kima, Jeong-Ho Leeb, Tae Sung Junga,*
a Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
b Inland Aquaculture Research Center, NIFS, Changwon, 645-806, South Korea
*Corresponding author : Tae Sung Jung
Abstract
The use of molecular adjuvants to improve the immunogenicity of DNA vaccines has been thoroughly studied in recent years. Glycoprotein (G)-based DNA vaccines had been proven to be effective in combating infection against Rhabdovirus (especially infectious hematopoietic necrosis virus, IHNV) in salmonids. DDX41 is a helicase known to induce antiviral and inflammatory responses by inducing a type I IFN innate immune response. To gain more information regarding G-based DNA vaccines in olive flounder (Paralicthys olivaceus), we tried to develop a more efficient G-based DNA vaccine by adding a molecular adjuvant, DDX41. We designed a DNA vaccine in which the VHSV glycoprotein (G-protein) and DDX41 were driven by the EF-1α and CMV promoters, respectively. Olive flounders were intramuscularly immunized with 1 μg of plasmids encoding the G-based DNA vaccine alone (pEF-G), the molecular adjuvant alone (pEF-D), or the vaccine-adjuvant construct (pEF-GD). At two different time points, 15 and 30 days later, the fish were intraperitoneally infected with VHSV (100 μL; 1 × 106 TCID50/mL). Our assays revealed that the plasmid constructs showed up-regulated expression of IFN-1 and its associated genes at day 3 post-vaccination in both kidney and spleen samples. Specifically, pEF-GD showed statistically higher expression of immune response genes than pEF-G treated group (p < 0.05/p < 0.001). After VHSV challenge, the fish group treated with pEF-GD showed higher survival rate than the pEF-G treated group, though difference was not statistically significant in the 15 dpv challenged group however in the 30 dpv challenged group, the difference was statistically significant (p < 0.05). Together, these results clearly demonstrate that DDX41 is an effective adjuvant for the G-based DNA vaccine in olive flounder. Our novel findings could facilitate the development of more effective DNA vaccines for the aquaculture industry.
Keywords : DDX41; Glycoprotein; VHSV; Interferon; Innate immune system
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기