한빛사논문, 상위피인용논문
Abstract
Shihao Shena,1, Juw Won Parka,1, Zhi-xiang Lua, Lan Lina, Michael D. Henryb,c, Ying Nian Wud, Qing Zhoud, and Yi Xinga,2
Departments of aMicrobiology, Immunology, & Molecular Genetics and
dStatistics, University of California, Los Angeles, CA 90095; and
Departments of bMolecular Physiology and Biophysics and
cPathology, University of Iowa, Iowa City, IA 52242
Abstract
Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.
RNA sequencing, alternative splicing, exon, isoform, transcriptome
1S.S. and J.W.P. contributed equally to this work.
2To whom correspondence should be addressed.
Author contributions: S.S., Y.N.W., Q.Z., and Y.X. designed research; S.S., J.W.P., Z.-x.L., and L.L. performed research; S.S., J.W.P., L.L., and M.D.H. contributed new reagents/analytic tools; S.S., Z.-x.L., and Y.X. analyzed data; and S.S. and Y.X. wrote the paper.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기