한빛사논문
Abstract
Eunji Cheong and Hee-Sup Shin
Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea; and Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
Abstract
Low-voltage-activated T-type Ca2+ channels are widely expressed in various types of neurons. Once deinactivated by hyperpolarization, T-type channels are ready to be activated by a small depolarization near the resting membrane potential and, therefore, are optimal for regulating the excitability and electroresponsiveness of neurons under physiological conditions near resting states. Ca2+ influx through T-type channels engenders low-threshold Ca2+ spikes, which in turn trigger a burst of action potentials. Low-threshold burst firing has been implicated in the synchronization of the thalamocortical circuit during sleep and in absence seizures. It also has been suggested that T-type channels play an important role in pain signal transmission, based on their abundant expression in pain-processing pathways in peripheral and central neurons. In this review, we will describe studies on the role of T-type Ca2+ channels in the physiological as well as pathological generation of brain rhythms in sleep, absence epilepsy, and pain signal transmission. Recent advances in studies of T-type channels in the control of cognition will also be briefly discussed.
논문정보
관련 링크
연구자 키워드
연구자 ID
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기
해당논문 저자보기