한빛사논문, 상위피인용논문
Abstract
Sang Hoon Kima,1, Youngseok Leea,1, Bradley Akitakea, Owen M. Woodwardb, William B. Gugginob, and Craig Montella,2
aDepartments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
bDepartment of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
Edited* by Solomon Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 22, 2010 (received for review February 5, 2010)
1S.H.K. and Y.L. contributed equally to this work.
Abstract
Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)β and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation channels required in insect GRNs are unknown. Here, we set out to explore additional sensory roles for the Drosophila TRPA1 channel, which was known to function in thermosensation. We found that TRPA1 was expressed in GRNs that respond to aversive compounds. Elimination of TRPA1 had no impact on the responses to nearly all bitter compounds tested, including caffeine, quinine, and strychnine. Rather, we found that TRPA1 was required in a subset of avoidance GRNs for the behavioral and electrophysiological responses to aristolochic acid. TRPA1 did not appear to be activated or inhibited directly by aristolochic acid. We found that elimination of the same PLC that leads to activation of TRPA1 in thermosensory neurons was also required in the TRPA1-expressing GRNs for avoiding aristolochic acid. Given that mammalian TRPA1 is required for responding to noxious chemicals, many of which cause pain and injury, our analysis underscores the evolutionarily conserved role for TRPA1 channels in chemical avoidance.
transient receptor potential, chemosensation, taste, phospholipase C, aristolochic acid
Footnotes
2To whom correspondence should be addressed.
Author contributions: S.H.K., Y.L., B.A., and C.M. designed research; S.H.K., Y.L., B.A., and O.M.W. performed research; S.H.K., Y.L., B.A., O.M.W., W.B.G., and C.M. analyzed data; and S.H.K., Y.L., and C.M. wrote the paper.
The authors declare no conflict of interest.
*This Direct Submission article had a prearranged editor.
This article contains supporting information online at
www.pnas.org/cgi/content/full/1001425107/DCSupplemental.
논문정보
관련 링크
연구자 키워드
관련분야 연구자보기
소속기관 논문보기
관련분야 논문보기