[DEBUG-WINDOW 처리영역 보기]
즐겨찾기  |  뉴스레터  |  오늘의 정보 회원가입   로그인
BRIC홈 VOD
시스템점검 12월 13일 오후 10시
스폰서배너광고 안내  배너1 배너2 배너3 배너4
전체보기 스페셜VOD 세미나VOD 교육VOD
An integrated Bayesian network framework for reconstructing representative genetic regulatory networks
이필현
이필현 (KAIST)
제2차 한국생물정보학회 연례학술대회  |  2003.10.31
In this paper, we propose the integrated Bayesian network framework to reconstruct genetic regulatory
networks from genome expression data. The proposed model overcomes the dimensionality problem of
multivariate analysis by building coherent sub-networks from confined gene clusters and combining these networks via intermediary points. Gene Shaving algorithm is used to cluster genes that share a common
function or co-regulation. Retrieved clusters incorporate prior biological knowledge such as Gene
Ontology, pathway, and protein protein interaction information for extracting other related genes. With
these extended gene list, system builds genetic sub-networks using Bayesian network with MDL score
and Sparse Candidate algorithm. Identifying functional modules of genes is done by not only microarray
data itself but also well-proved biological knowledge. This integrated approach can improve the
reliability of a network in that false relations due to the lack of data can be reduced. Another advantage is the decreased computational complexity by constrained gene sets. To evaluate the proposed system, S.Cerevisiae cell cycle data [1] is applied. The result analysis presents new hypotheses about novel genetic interactions as well as typical relationships known by previous researches [2].
본 동영상의 Citation 복사
조회 2901    주소복사 트위터 공유 페이스북 공유 
Microarray and Gene Expression
박찬호(연세대학교)
제2차 한국생물정보학회 연례학술대회 | 2003.10.31
김판규(부산대학교)
제2차 한국생물정보학회 연례학술대회 | 2003.10.31
이필현(KAIST)
제2차 한국생물정보학회 연례학술대회 | 2003.10.31
VOD홈 목록보기
 
포스텍 생명과학과
제2차 한국생물정보학회 연례학술대회 - Sessions
  FAQ 더보기>  
위로가기
VOD 홈  |  VODFAQ  |  VOD 문의 및 제안
 |  BRIC소개  |  이용안내  |  이용약관  |  개인정보처리방침  |  이메일무단수집거부
Copyright © BRIC. All rights reserved.  |  문의 member@ibric.org
트위터 트위터    페이스북 페이스북    RSS서비스 RSS
머크