[DEBUG-WINDOW 처리영역 보기]
BRIC을 시작페이지로 회원가입    로그인
배너1 스폰서배너광고 안내
오늘의 BRIC정보
트위터 페이스북
검색 뉴스레터 안내
좋은 연구문화 만들기
Bio일정 프리미엄(유료) 등록이란?
2017년 생화학분자생물학회 국제학술대회- 43건등록
바이오 형광사진
실험의 달인들
Biojob 프리미엄(유료) 등록이란?
대메뉴안내: 동향
뉴스 Bio통신원 Bio통계 BRIC View BRIC이만난사람들 웹진
조회 11049  인쇄하기 주소복사 트위터 공유 페이스북 공유 
Oxygenated Oceans Go Way, Way Back
생명과학 ScienceNow (2009-03-17 00:00)
Sometimes the evidence for a dramatic find lies right in plain sight. In this case, researchers studying mineral outcrops in northwestern Australia have found deposits of hematite, an oxide of iron, that are 3.46 billion years old. The hematite probably formed from reactions with oxygen molecules in the oceans. If confirmed, the discovery could mean that oxygen-producing photosynthetic organisms originated more than a billion years earlier than previously thought.

Common scientific wisdom says that the first microbes that performed oxygenic photosynthesis--turning sunlight and carbon dioxide into sugar and oxygen--arose about 2.4 billion years ago. Researchers know this because the oldest molecular remnants of bacteria capable of oxygenic photosynthesis were discovered in sedimentary rocks of that age and because hematite crystals that formed from reactions between iron and atmospheric oxygen have been common ever since. Before then, theories go, there was no oxygen in the oceans or the air, so minerals such as hematite could not have been created by processes related to life. Most likely, hematite in older rocks formed from the interaction of iron with small quantities of primordial oxygen in groundwater.

But geochemist Hiroshi Ohmoto of Pennsylvania State University, University Park, wasn't convinced. He and his team searched for sedimentary layers (the bottoms of ancient oceans) older than the 2.4-billion-year-old boundary that contained oxygenated minerals. As they report online this week in Nature Geoscience, they hit pay dirt in the Pilbara Craton formation--once the bottom of an ancient sea and now a rock outcrop in Australia. There, they found the signature red hematite embedded in the 3.46-billion-year-old rock. The mineral probably formed, Ohmoto says, when hot water spewing from hydrothermal vents on the sea floor interacted with oxygen in the seawater--oxygen manufactured by photosynthetic bacteria. Now, he says, the challenge will be to find hematite in other sedimentary rocks older than 2.4 billion years old, adding to the evidence for an earlier start to photosynthesis.

It's "very compelling evidence," says isotope chemist Paul Knauth of Arizona State University, Tempe. The result may go "against the widespread view that [oxygenic] photosynthesis didn't appear" until about 2.4 billion years ago, he says, but the paper's conclusion "is the simplest explanation." He says he hopes the findings will provoke discussion among "all those who argue that the case is closed--surely, we are still learning."

에보닉코리아 스폰서배너광고 안내
이전페이지로 돌아가기 맨위로 가기

BRIC 홈    BRIC 소개    회원    검색    문의/FAQ    광고    후원
Copyright © BRIC. All rights reserved. Contact member@ibric.org